Topic
A/B Testing (9) API (1) Artificial Intelligence (31) Automation (6) Automattic (20) best practices (10) Bias in AI (6) Books and Reading (6) Career and Professional Development (14) Causal Inference (1) Communication (14) Conferences and Events (5) Data Analytics (23) Data Discoverability (4) Data Engineering (12) Data Ethics (10) Data Products (1) Data Science (53) Data Speaker Series (4) Data Visualization (23) Deep Learning (3) Distributed Work (8) Diversity and Inclusion (8) Elasticsearch (8) Experimentation (12) Information Retrieval (6) Learning and Education (6) Machine Learning (43) Marketing Analytics (7) Meetup (2) Natural Language Processing (6) Network Analysis (8) Open Source (7) Productivity (10) Python (8) Remote Work (21) Scientific Communication (10) Semantic Search (2) Social Media Analytics (1) Software Engineering (4) Surveys and Research Methods (1) Tech Industry (14) Technology Trends (1) Time Series Analysis (2) Transparency in Data (2) WordPress (21) WordPress.com (1) Work Life Balance (6)
Do natural language processing tools from Amazon and Google contain racial and gender bias? Charles Earl investigates.
Charles Earl shares what he learned from this year’s conference.
From machine learning to matrix calculus, we’ve got some great reads for you in the field of data science.
In this installment, we’ve got links to great reading in the field of data science, courtesy of Yanir, Robert, Demet, and yours truly.
Charles Earl on identifying and overcoming bias in machine learning.