Topic
A/B Testing (9) API (1) Artificial Intelligence (31) Automation (6) Automattic (20) best practices (10) Bias in AI (6) Books and Reading (6) Career and Professional Development (14) Causal Inference (1) Communication (14) Conferences and Events (5) Data Analytics (23) Data Discoverability (4) Data Engineering (12) Data Ethics (10) Data Products (1) Data Science (53) Data Speaker Series (4) Data Visualization (23) Deep Learning (3) Distributed Work (8) Diversity and Inclusion (8) Elasticsearch (8) Experimentation (12) Information Retrieval (6) Learning and Education (6) Machine Learning (43) Marketing Analytics (7) Meetup (2) Natural Language Processing (6) Network Analysis (8) Open Source (7) Productivity (10) Python (8) Remote Work (21) Scientific Communication (10) Semantic Search (2) Social Media Analytics (1) Software Engineering (4) Surveys and Research Methods (1) Tech Industry (14) Technology Trends (1) Time Series Analysis (2) Transparency in Data (2) WordPress (21) WordPress.com (1) Work Life Balance (6)
Recently, I was asked to determine the extent to which seasonality influenced a particular time series. No problem, right? The statsmodels Python package has a seasonal_decompose function that seemed pretty […]
Anomaly detection and time series forecasting are valuable in monitoring the financial and technical health of an organization. Proper modeling of time series requires accounting for periodic fluctuation; malicious users; data irregularity, saturation or scarcity; sudden peaks and drops. To account for these parameters, the modeler needs to select the proper model family, optimize the…